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Abstract-The transient response of a subsurface inclined crack subjected to a buried dilatational
source is analysed in this study. This investigation will be helpful in understanding the problems of
seismology and waves generated by thermal loading in a cracked body. The solutions are determined
by superposition of the fundamental solution in the Laplace transform domain. The required
fundamental solution is the exponentially distributed traction on crack faces proposed by Tsai and
Ma [1992a, ASME J. Appl. Mech. (in press)]. The exact closed form solutions of the time dependent
dynamic stress intensity factors are obtained. These solutions are valid in the time interval from
initial loading until the first wave scattered by the crack tip returns to the crack tip after reflection
from the free surface. The direction of the crack propagation is predicted by different fracture
criteria from the available stress intensity factors.

1. INTRODUCTION

The phenomenon of an earthquake can be considered as a complicated elastic wave propa
gation process. Some elastic waves travel through the interior of the earth, and some over
its surface, while others are reflected from its surface. These waves give us the most detailed
information about the internal structure of the earth. If there is a pre-existing fault, it will
disturb the propagation wave and make the theoretical analysis much more difficult than
in a homogeneous medium.

The mathematical analysis of dynamic fracture is extremely difficult. The existing
solutions have limited applicability, since they rarely incorporate the effects of external
boundaries. Garvin (1956) analysed displacemens on a plane surface subjected to a buried
dilatational source. His results were limited to the homogeneous half-space problem. Harris
(1980) solved the interaction of a dilatational wave with the semi-infinite crack in an
unbounded medium. These results were also constrained to the unbounded medium. In this
paper, a two-dimensional analysis of a subsurface inclined crack subjected to a buried
dilatational source is studied. This may shed some light on the investigation of seismology.
In analysing this problem, the reflections and diffractions of stress waves by the material
boundaries and by the crack itself must be taken into account. The dilatational source can
be generated by an explosive impulse and a thermal expansion effect. In many applications,
the characteristic time for heat input is much larger than the characteristic mechanical
response time, so that the inertia effect is small. If the inertia effect is significant, then the
stress wave generated by heating must be considered. The dynamic dilatational source can
be used to simulate a thermal stress wave generated by heating. If the distance from the
crack tip to the free surface is large, the solution obtained in this study can be reduced to
one for a semi-infinite crack in an unbounded medium.

In a conventional analysis of a semi-infinite crack in an unbounded medium subjected
to dynamic loading, the complete solution can be obtained by integral transform methods
together with direct application of the Wientr-Hopf technique (Noble, 1958) and the
Cagniard-de Hoop method (de Hoop, 1958) of Laplace inversion. The transient analysis
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of an elastic solid containing a half-plane crack subjected to concentrated impact loading
of the crack faces was dislocation climbing along the crack tip line with a constant speed
to construct the solution for the transient response. Based on this methodology, Brock's
(1982,1984) and Brock et al.'s (1985) analyses investigated a series of problems ofa semi
infinite crack subjected to impact loading. Recently, Lee and Freund (1990) analysed the
fracture initiation of an edge-cracked plate subjected to an asymmetric impact by a similar
procedure. Ma and Hou (1990a, b) analysed the characteristic time required for the transient
response ofa semi-infinte crack subjected to dynamic loading to approach the corresponding
static solution. We consider the problem in this study to be the transient response of an
elastic half-plane with a semi-infinite inclined crack subjected to a buried dynamic dilat
ationalloading. The methods proposed by Freund (1974) and Brock et al. (1985) are very
difficult to apply and do not provide an easy solution to the problem investigated in this
study. An alternative fundamental solution proposed by Tsai and Ma (1992a) is used to
overcome this difficulty. Finally, the possibility ofcrack surface interpenetration is evaluated
by the analysis of crack opening displacement.

2. FUNDAMENTAL SOLUTIONS

As usual in problems of the type considered here, superposition of solutions plays a
significant role. The solutions of the problems considered in this study can be determined
by superposition of the following problems A and B. Problem A treats the dynamic force
acting on the same semi-infinite half-plane without a crack while inducing a traction on the
planes which will eventually define the initial crack faces. In problem B, an infinite body
containing a semi-infinite crack is considered in which the faces are subjected to tractions
which are equal and opposite to those on the corresponding planes in problem A. The sum
of the solutions to problems A and B is the solution to the problem of diffraction of incident
waves by a stationary inclined crack.

From the physical viewpoint, reflected and diffracted fields are generated to eliminate
the stress induced by incident waves on the traction-free boundary. For most of the dynamic
problems, the incident waves can be represented in the exponentially functional form in the
Laplace transform domain of time. Unlike the usual superposition method which is per
formed in the time domain, the superposition scheme proposed in this study is performed
in the Laplace transform domain.

Consider plane strain deformation of a semi-infinite crack contained in an unbounded
medium. An exponentially distributed traction in the Laplace transform domain is applied
to the crack faces. The traction force can be divided into a normal force (mode I) and a
tangential force (mode II). Because of symmetry with respect to the plane X2 = 0, the
problem can be viewed as a half-plane problem with the material occupying the region
X2 ~ 0, subjected to the boundary conditions:

mode I

and mode II

O'22(XI>O,P) = eP~XI, -00 < Xl ~ 0,

0'12(XI>0,P) =0, -00 <Xl < 00,

U2(XI> O,p) = 0, °~ XI < 00,

0'22 (X I> O,p) = 0, - 00 < XI < 00,

0'12(XI>0'P) = eP~XI, -00 < Xl ~ 0,

(1)

(2)

where P is the Laplace transform parameter and 1/ is a constant. The overbar symbol is
used to denote the transform on time t. The final results of the dynamic mode I, II stress
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intensity factors and mode I crack surface opening displacement in the Laplace transform
domain are

where

- !2 F - !2 F
K 1 = -..JpKdrf), K II = -..JpK II (I1),

I1UZ = -2~ r l1u~(A, 11) eP!.x, dA,
1tlp.p Jr. (3)

and a = Jp/(y+2p.), b =,JPjJJ" a, band c are the slownesses of the longitudinal wave,
shear wave and Rayleigh wave, p. and p are the shear modulus and mass density, and y is
the Lame elastic constant. r 1 is the usual inversion path for the two-sided Laplace transform
from A.I -ioo to Al +ioo, and Al is a real number and is located in the intervallAII < a.

3. SUBSURFACE CRACK SUBJECTED TO BURIED DILATATIONAL SOURCE

The problems of seismology and thermal stress wave interaction with a crack can be
idealized by a two-dimensional subsurface crack subjected to a dynamic dilatational source.
The geometric configuration considered in this paper is an inclined semi-infinite crack
located under the surface of a half-plane as shown in Fig. 1. The incident wave generated
by the dynamic dilatational source will be diffracted from the crack tip and reflected from
the free surface. In this study, we focus our attention mainly on the dynamic stress intensity
factor. The results of the dynamic stress intensity factor obtained in this study are valid in
the time before the diffracted wave generated from the crack returns to the crack tip after
reflection from the free surface. The origins of the two coordinate systems (x J, xz) and
(xJ,xz) are located at the plane surface and the crack tip, respectively. The planar crack
lies in the plane Xz = 0, XI < 0 and the inclined angle of the crack is e. The coordinate
transforms and stress relations between these two systems are:

r-~-----1
---.:::---------~..--....,.........,.....----+ X,

Fig. I. Configuration, coordinate system and wave fronts of a sub-surface crack subjected to a
dynamic dilatational source.
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XI = XI COS 8+X2 sin 8,

X2 = -XI sin 8+X2 cos 8+h,

(i22 = (iTT sin2 8+(i22 cos2 8+(in sin 28,

(i 12 = 1«(iTT - (i22) sin 28 + (in cos 28,

(4)

(5)

where h is the vertical distance from the crack tip to the plane surface.
A dilatational source applied suddenly in an infinite medium can be represented by the

wave equation of longitudinal potential 4> as follows

(6)

The corresponding longitudinal potential 4>0 can be expressed in the Laplace transform
domain as follows

.r ( 1I ) = _ Ko(par)
'flo r, u,p ,

p
(7)

where Ko is the modified Bessel function of the second kind of order zero. Now, consider
a buried dilatational source located at Xl = I, X2 = H (or XI = I], X2 = -hi) applied
suddenly at time t = O. The stresses in the region X 2 +hi> 0 induced by this dilatational
source in the Laplace transform domain are

(8)

(9)

where

The incident longitudinal P wave will be reflected and diffracted from the crack. There will
also be PP and PS waves reflected from the free surface, which will arrive at the crack tip
at a later time. These two situations will be investigated separately in the following analysis.
The interaction of the dilatational P wave with the semi-infinite crack in an unbounded
medium is considered first. The traction applied on the crack faces to eliminate the incident
P wave can be obtained from (8) and (9) by letting X2 = 0:

(10)

(II)

It is shown in (10) and (II) that tractions on the crack surfaces are represented by the
exponential function e PAx " while the stress intensity factors of an applied traction eP~x, are
expressed in (3). So, the induced stress intensity factors of (10) and (II) in the Laplace
transform domain can be constructed by superposition of the fundamental solution obtained
in Section 2. The results are:
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(12)

(13)

The stress intensity factors in the time domain can be obtained by employing Cagniard's
method of Laplace inversion:

where

(14)

(15)

II
cos ()I =-,

'1
. () hI

SIn 1=-'

'I
(16)

The influence on the stress intensity factor of reflected PP and PS waves is considered
now. The half-plane problem (without a crack) subjected to dynamic dilatational loading
has been solved by Garvin (1956). Here we use an alternate formulation by Tsai and Ma
(1991) that is more in keeping with the analytical techniques presented herein. The reflected
PP and PS waves are generated at the surface of the half-plane in order to eliminate the
stress induced on the free surface by the incident wave. The stresses of the incident wave in
the region H - X2 > 0 can be expressed in the Laplace transform domain as follows:

(17)

(18)

Setting X2 = 0 in (17) and (18), the traction to be cancelled in the free surface can also be
represented in the exponential form. Hence, the fundamental solutions to the exponentially
distributed loading on the half-plane surface obtained by Tsai and Ma (1991) can be used
to construct the reflected field. Omitting details, the final results of the reflected PP and PS
waves in the Laplace transform domain are presented as follows:

where
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(b 2- 2A2) 3_ 4af3A2(b2_ 2A2) (b 2_ 2(2)«b2_ 2A 2) 2-4af3A 2)
A 3(A) = cos2 8+ sin2 8

Ra Ra

-2Je(b 2-2Je2)2+8af3A3
.+--.....----.--~ sm 28

R '

8f3Je2(b 2-2Je2) 4Je(b 2-2Je2)2
A 4 (A.) = R cos 28+ R sin 28,

I (b 2- 2(2)«b2- 2A. 2)2 _ 4af3A. 2) - (b 2_ 2A. 2) 3+ 4af3A.2(b2_ 2A. 2) .
As(A.) = 2 Ra sm 28

- 2Je(b2- 2A. 2)2 + 8af3A. 3

+ R cos 28,

8f3A. 2(b 2-2A. 2) 4A.(b2-2A. 2)2
A 6 (A.) = - R sin 28+ R cos 28,

f3 = (b 2_Je2)1/2, R = (b 2-A.2)2+4af3A.2. (21)

The first term of both (19) and (20) represent the reflected longitudinal (PP) wave while
the second term in each represent the reflected shear (PS) wave. The tractions applied on
the crack suface required to satisfy the traction-free boundary condition are obtained from
(19) and (20) by setting X2 = 0 which yields:

a
22

= - J.l~ r [A
3
(A.)eP(lcos8+osin8lx,-p,(h+Hl-p,l/

21 .Ir,

a\2 = - J.l~ r [As(A.)eP(lcoS8+,sin8lx,-p,(h+Hl-p,l/
21 .Ir,

+A
6
(A.)eP(AcosH/lsin8)x,-p/lh-p,H-P,l/] dJe. (23)

It is shown in (22) and (23) that tractions on crack surfaces are represented by the
exponential functions eP(lcos8+,sin8lx, and eP(lcos8+/lsio8lx,. The mixed mode stress intensity
factors in the Laplace transform domain due to applied tractions (22) and (23) on crack
faces can be constructed by superposition. If 11 is replaced by A. cos 8 + a sin 8 and
A. cos 0+ f3 sin 0 and (3), (22) and (23) are combined, the final results are:

Kr = J.lJ2P2~P r [A 3 (A.)KF(A. cos 8+a sin 8) e-p,(h+H)-pll
1 Jr'

+ A 4 (A.)KF (A. cos 8 + f3 sin 8) e-p/lh-p,H-p,l/] dA., (24)

KR = J.lJ2P r [A (A.)KF (A. cos 8+a sin 8) e-p,(h+H)-p,l/
II 2i Jr' s II

+A 6 (A.)KiI(A. cos 8+ f3 sin 8) e-p/lh-p,H-pll] dX (25)

The stress intensity factors in the time domain can be obtained by inverting the Laplace
transform using Cagniard's method. The results are:
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where A3 is the root of the function, = Ph +r:x.H+AI, and

405

(26)

(27)

(28)

The two terms in (26) and (27) represent the contribution of the reflected PP and PS
waves, respectively. Times a,z and Tps represent the arrival time of wave fronts for PP and
PS waves at the crack tip, respectively. If the dilatational source is generated by a thermal
heating variable eoH(t), stress intensity factors can be obtained by multiplying the results
shown in (26) and (27) by the factor of aeo(1 +v)f2n(l-v), where a is the thermal
expansion coefficient and eo is a constant.

Under realistic dynamic loading conditions, it is impossible to produce a true loading
with Heaviside function time dependence. Instead, the loading pulse has a finite rise time.
Therefore, in order to simulate a practical explosive event, the analysis is extended to the
case in which the loading pulse has a finite rise time. Suppose that at time t = 0, the pulse
is applied suddenly and the magnitude of the dilatational source increase according to the
function f(t) is

t
f(t) = T

R
for 0 ~ t ~ TR,

= I for TR < t, (29)

where TR denotes the rising time. Then, the stress intensity factors can be obtained by the
superposition method

, il
df(,)KIII(t) = -d- KIII(t-,) dr., 0" (30)

In this study, we also consider an explosive loading that has uniform distributed dilatational
sources on a circular disk of radius '0 with its center at Xl = I, Xz = H. The numerical
values of the stress intensity factors for the distributed sources can be obtained using the
superposition scheme. Practical structures are not only subjected to tension but also to
shear loading. In mixed mode experiments, it is usually observed that crack extension takes
place under an angle with respect to the original crack direction. With the mixed stress
intensity factors which have been obtained, the criteria of maximum circumferential tensile
stress proposed by Erdogan and Sih (1963) and minimum strain energy density proposed
by Sih (1972) will be introduced to examine the crack growth direction. The maximum
circumferential tensile stress criterion postulates that the crack will grow ina direction
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determined by the condition that the circumferential tensile stress within the asymptotic
field is at a maximum, the angle between the crack line and the direction of crack growth,
82( = 8-8c), satisfies

sin 82~ + (3 cos 82 -1)KII = O. (31)

The strain energy density criterion states that crack growth takes place in the direction of
minimum strain energy density. The relation for determining 82, the angle of crack exten
sion, is given by:

(1- 2v)( - 2 sin 82Kl-4 cos 82K1KII +2 sin 82Kfi)

+ (sin 28 2Kt +4 cos 28 2K1KII - 3 sin 282Kfi) = O. (32)

4. CRACK SURFACE OPENING DISPLACEMENT

The crack surface opening displacement is analysed to investigate the possibility of
crack surface interpenetration induced by the dynamic dilatational source. The crack
opening displacement l1u2 represents the difference in the vertical displacement for upper
and lower crack surfaces. By using the superposition method, the crack opening dis
placement in the Laplace transform domain for the semi-infinite crack induced by the
dilatational incident P wave can be expressed as follows:

(33)

The crack opening displacement induced by reflected PP and PS waves generated from the
free boundary of the half-plane can be expressed as :

Equations (33) and (34) possess a double inversion integral which can be carried out by
using the method proposed by Harris (1980). The transient effect of reflected waves induced
by the crack surface and diffracted wave and Rayleigh wave generated from the crack tip
can be separated from the above equations. The final form ofthe crack opening displacement
in the time domain is very complicated and is omitted here, only the numerical results will
be discussed in the next section.

5. NUMERICAL RESULTS

For the numerical calculation of the mixed dynamic stress intensity factors, Poisson's
ratio v is assumed to be equal to 0.25. In this case, the ratios of the slownesses are b = -/3a
and c = 1.88a. The point explosive loadings of the Heaviside function dependence are
applied at the positions H = 0.5h, I = - h, 0 and h. The inclined angles of crack () chosen
for this investigation are 0°, 45° and 90°. There are nine combinations of loading position
and inclined crack angle. The dynamic stress intensity factors for the time interval ofinterest
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Fig. 4. Stress intensity factors K[ and KII for a dilatational source at / = hand H = O.5h.

are shown in Figs 2-4. The crack propagation angle ()e that satisfies (31) and (32) for the
problem analysed here is shown in Figs 5 and 6.

For the case of an applied loading at the left- (right-) hand side of the crack tip, we
use 1= -h (I = h). The results obtained in this study are valid in the time period when
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Fig. 7. Stress intensity factors K, and Ku subjected to a uniformly distributed dilatational source.

diffracted waves from the crack tip reflected from the half-plane boundary have not yet
returned to the crack tip, that is the time period JUS ~ tjah ~ JUS+ 2. There are
incident P waves generated at the explosive point and reflected PP and PS waves generated
at the free surface which will strike the crack tip at different times. The normalized time
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tJah for wave fronts to arrive at the crack tip are J125 for the P wave, J3.25 for the PP
wave, and 2.642 for the PS wave. If loading is applied at I = 0, which is the case when the
explosive source is applied directly above the crack tip. The time interval for numerical
calculation in this case will be 0.5 ~ tJah ~ 2.5. The normalized arrival times are 0.5 for
the P wave, 1.5 for the PP wave, and 0.5+)3 for the PS wave. If 8 = 90°, the crack is
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perpendicular to the half-plane surface, and symmetry dictates that only the mode I stress
intensity factor will exist. The histories of stress intensity factors show a finite jump plus
an increase in the delta function at P, PP and PS wave fronts. If the buried crack is far
away from the half-plane boundary, the effect ofPP and PS waves can be neglected. If the
stress intensity factor due to the incident P wave for time is large enough it will approach
the static value obtained by using the method of Tsai and Ma (1992b).

The crack propagation angle Be that is predicted by maximum circumferential tensile
stress and minimum strain energy density criterion for the problem analysed here is shown
in Figs 5 and 6. It is concluded from these two figures that for most cases studied in this
paper, the crack propagation angle 8e is greater than zero meaning that the crack will
propagate toward the half-plane surface to fracture the specimen.

In order to simulate a realistic explosive phenomenon, a rise time TR = O.5ah is chosen
for the calculation. The explosive area is assumed to be a circular disk of radius '0 = O.05h
with its center at H = O.5h, I -h or h. The orientation of the crack is parallel or
perpendicular to the free surface. The numerical results for the stress intensity factors are
shown in Fig. 7. The result shows a continuation of the stress intensity factor at the wave
fronts. The maximum circumferential tensile stress criterion is used to predict the crack
propagation direction shown in Fig. 8.

In order to investigate the possibility of the crack surface interpenetration base on the
transient solution obtained in this study, the crack opening displacement of a horizontal
crack (8 = 0°) is evaluated for a point dilatational source located at 1= - h, hand H = 0.5h.
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The interaction of the dilatational P wave with the semi-infinite crack in an unbounded
medium is considered first. This problem can provide a clear feature of the transient effect
without the influence by the half-plane boundary. For time large enough, the transient
analysis of the crack opening displacement can be compared with the static solution obtained
under a static loading source. The numerical results of crack opening displacement at
XI = -O.lh, -0.5h, -h, -2h are shown in Figs 9 and 10. The negative value for !1uz
indicates the crack surface interpenetration and the positive value represents the crack
surface opening. There are four transient waves propagating through the crack face during
the full history. The incident dilatational P wave will be reflected from the crack surface as
the reflected wave (R). Latterly, the incident wave will be diffracted by the crack tip and
the diffracted longitudinal wave (OP) and diffracted shear wave (OS) will be generated.
Finally, the Rayleigh wave (SR) arrives at the observation point. The arrival times for the
above indicated waves are shown for the typical point of X I = - h. These results also show
that the transient solution of crack opening displacement will jump and approach the
corresponding static value after the Rayleigh wave has passed. In the case of 1= - h, the
phenomenon of crack surface interpenetration will not be eliminated during the transient
history. But in the case of 1= h, the crack surface will be opened again after the Rayleigh
wave has passed.

It seems that the interpenetration is severe enough to invalidate the present transient
results, but this phenomenon changes rapidly when the reflected longitudinal wave generated
from the boundary of the half-plane reaches the crack surface. The completed structure of
the crack opening displacement, induced by the influence of the reflected waves from the
free boundary, is represented in Figs II and 12. Each reflected wave (PP, PS) induced at
the half-plane boundary will generate reflected waves (R), diffracted waves (OP, OS) and
Rayleigh waves (SR) at the crack surface. It is shown in Figs II and 12 that the crack
surface will be opened again after the reflected PP wave returns to the crack surface and
the time taken for the reflected wave to arrive at the crack in different cases is denoted by
the arrow line. Even though the crack surface interpenetration is severe the duration time
is small enough to neglect this effect in most cases.

6. CONCLUSION

In this study, an exponentially distributed loading on the crack surfaces in the Laplace
transform domain is considered as the fundamental solution. The waves resulting from the
diffraction of incident waves from the explosive source by the crack tip and reflected waves
from the free surface can be constructed by superimposing the fundamental solution. This
new methodology is shown to be both powerful and efficient in solving more complex and
difficult problems.

In the previous sections, a subsurface inclined crack subjected to a longitudinal wave
generated by an explosive source has been investigated. The net result of this loading will
induce a mixed mode field at the crack tip. Exact mixed mode I and II stress intensity
factors and crack opening displacement are obtained in an explicit form. The present results
have been justified by the corresponding static value without considering the effect of the
half-plane boundary. The crack surface interpenetration may occur, which will depend on
the location of the dilatational source and crack orientation. In general, the crack surface
will be opened after the reflected waves generated from the free half-plane boundary arrive
at the crack surface. The exact solution to this configuration can provide a valuable check
for pure numerical methods such as finite element, finite difference or boundary element
methods in solving more complex geometries. The maximum circumferential tensile stress
and minimum strain energy criteria are used to predict the direction of crack propagation.
It is found in this study that the crack will most likely extrude out of the half-plane surface.
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